
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 21 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

International Reviews in Physical Chemistry
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713724383

Electron-impact vibrational excitation of polyatomic molecules
Yukikazu Itikawa

Online publication date: 26 November 2010

To cite this Article Itikawa, Yukikazu(1997) 'Electron-impact vibrational excitation of polyatomic molecules', International
Reviews in Physical Chemistry, 16: 2, 155 — 176
To link to this Article: DOI: 10.1080/014423597230253
URL: http://dx.doi.org/10.1080/014423597230253

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713724383
http://dx.doi.org/10.1080/014423597230253
http://www.informaworld.com/terms-and-conditions-of-access.pdf


I n t e r n a t i o n a l R e v i e w s i n P h y s i c a l C h e m i s t r y , 1997, V o l . 16, N o . 2, 155± 176

Electron-impact vibrational excitation of polyatomic molecules

by YUKIKAZU ITIKAWA

Institute of Space and Astronautical Science, Yoshinodai, Sagamihara 229, Japan

Vibrational excitation in electron collisions with polyatomic molecules is

reviewed. Theoretical treatments based on the ® xed-nuclear-orientation approxi-

mation are summarized. Results of the theoretical studies of H
#
O, H

#
S and CH

%
are

presented as an example and compared with experimental data. A calculation in

the Born approximation with a long-range electrostatic interaction is also shown.

In particular, the usefulness of the Born approximation with a dipole interaction is
examined in detail. Finally possible further improvement of the theory is discussed.

1. Introduction

In electron collisions with molecules, the excitation of molecular vibration is a very

common process, unless the electron energy is very low. The vibrational excitation is

the most important energy-loss process for an electron with energies less than a few

tens of electron volts. In fact, vibrational excitation plays a critical role in the process

of degradation or thermalization of high-energy (hot) electrons in a molecular gas

(Kimura et al. 1993, Krajcar-Bronic and Kimura 1995). On the other hand the

products of the process (i.e. the vibrationally excited molecules) are also of importance.

Sometimes they are very active in reaction or other collision processes (Mason et al.

1994). They also aŒect electron transport in gases (Christophorou et al. 1991). The

knowledge of electron-impact vibrational excitation therefore is needed in the ® elds of

gaseous electronics, plasma chemistry, radiation science, planetary science and

astrophysics.

Vibration is a nuclear motion of a molecule. It is di� cult for an electron to hit the

nucleus directly to move it. The colliding electron ® rst deforms the electron cloud in

the molecule. Following the deformation, the nuclei change their positions to ® nd a

corresponding equilibrium con® guration, thus leading to vibrational motion. In this

sense, vibrational excitation occurs through a coupling of electronic and nuclear

motions. This makes it di� cult to formulate rigorously the process of vibrational

excitation in general. Depending on the process considered, approximate methods

have been proposed. M ost of them, however, are concerned only with diatomic

molecules. In the present paper, theoretical approaches are reviewed on the vibrational

excitation of polyatom ic molecules.

A polyatomic molecule has multiple modes of vibration. They have diŒerent

fundamental frequencies and diŒerent symmetries. It is interesting to know how the

excitation cross-section depends on the nature of the respective vibrational mode.

Some of the vibrational transitions are infrared (IR) active. Do they matter in

electron-impact excitation ? Polyatomic molecules often have a vibrational mode with

a very small excitation energy (say, less than 0 ± 1 eV). Excitation of such a mode is

energetically easy to achieve. It is of practical importance to know the magnitude of

the cross-section for the excitation of such low-lying states. The dependence of the

excitation cross-section on the collision energy and } or the scattering angle must re¯ ect

the details of the vibrational mode. This kind of systematic study of the vibrational

excitation has not yet fully been attempted, because the problem is very complicated.
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156 Y . Itikawa

Although a number of experimental results have been already reported, very few

theoretical calculations have been performed on the vibrational excitation of

polyatomic molecules (except for the somewhat extensive work on the resonance or

the threshold structure in the cross-section of CO
#
). A theoretical study is necessary to

investigate the vibrational excitation in such a detailed manner as described above.

Furthermore an experiment cannot give su� cient information about the cross-section.

In the case of polyatomic molecules, diŒerent vibrational modes often have almost the

same fundamental frequency. Excitation of these modes cannot be separated

experimentally at least by the conventional technique. Another example is the angular

dependence. A beam-type experiment cannot measure cross-sections at the angles near

the forward ( h ¯ 0° ) and the backward ( h ¯ 180 ° ) directions. In these cases,

experimental data have to be supplemented with theoretical information to give a

complete picture of the vibrational excitation.

In the next section (section 2), general formulae are given for the calculation of the

vibrational cross-section of polyatomic molecules. Emphasis is placed on the ® xed-

nuclear-orientation approximation. Section 3 describes the interaction between the

colliding electron and the molecule taken in the cross-section calculation. Section 4

gives the cross-section formula in the Born approximation, which has been widely used

in the analysis of experimental data. In section 5, examples of the calculation are

presented for H
#
O, H

#
S and CH

%
. Detailed comparisons are made between the theory

and the experimental data available. Finally, in section 6, further improvement

necessary in the theory is discussed.

A vibrational cross-section often shows structure ascribed to a resonance eŒect.

Resonance phenomena in the electron± molecule collision have been discussed by

many workers, although mostly for diatomic molecules. Recently Lucchese and

Gianturco (1996) published a review article on the resonance in the case of polyatomic

molecules. In the present paper, therefore, no speci® c attention is paid to the resonance

eŒect in the vibrational cross-section.

2. Theoretical method

2.1. General formulae

Theoretical methods for electron± molecule collisions have been reviewed many

times (for the most recent review, see the book edited by Huo and Gianturco (1995)).

M ost of them deal with only diatomic molecules. W hen a polyatomic molecule is

chosen as a target, the details of the formulation become much more complicated,

although the essential part does not change. For an electron collision with polyatomic

molecules, Gianturco and co-workers have published several review articles

(Gianturco and Jain 1986, Gianturco 1995, Gianturco et al. 1995). In those articles,

they mentioned vibrational excitations, but very brie¯ y. In the present section, a

theoretical method is shown in some more detail for the vibrational excitation of

polyatomic molecules.

To solve the Schro$ dinger equation for a system of a colliding electron and a target

molecule, we usually expand the total wavefunction in terms of the target eigen-

function. As a result we obtain a system of coupled equations for the wavefunction of

the colliding electron (i.e. the so-called scattering equations). There are two diŒerent

approaches to solve the scattering equations: ® rstly the close-coupling method and

secondly the variational method. The ® rst method is to solve the coupled equations

with a truncation of channels to a ® nite number of closely coupled channels. It is

straightforward but sometimes very time consuming. The second method is to apply
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Electron-impact Š ibrational excitation 157

some kind of vibrational principle to the problem. In this case, instead of solving the

scattering equations, one derives a scattering amplitude or scattering matrix from a

variational formula. This method is rather easily applicable to a large molecule. To the

knowledge of the present author, however, the variational method has seldom been

applied to the calculation of the vibrational excitation of a polyatomic molecule. In the

following, we present a theoretical formulation based on the close-coupling method.

The essential ingredients of the theory are the same as those for diatomic molecules

given in the paper, for example, by Morrison and Sun (1995). Atomic units are used

throughout the present paper, unless otherwise noted.

First we consider the scattering problem in a space-® xed (SF) frame of coordinates.

In this frame, the origin of the coordinate is ® xed at the centre of gravity of the

molecule and the z axis is taken along the direction of the incident electron. The

wavefunction of the total (i.e. electron  molecule) system is expanded as

W JM ¯ 3
n « l « j « s «

r Õ " u JM
n « l « j « s « (r) v

n « ( n ) 9 JM
l « j « s « ( X , rW ). (2.1)

Here v is the vibrational wavefunction of the target molecule. The normal coordinates

and the vibrational quantum numbers are collectively denoted by n and n respectively

(i.e. n ¯ ( n
"
, n

#
, ¼ ) and n ¯ (n

"
, n

#
, ¼ )). The angular part of the wavefunction of the

colliding electron (whose direction is denoted by r#) and the rotational wavefunction of

the molecule (whose direction is denoted by the Euler angles X ) are coupled to form

an eigenfunction of the total angular momentum and its z component (J, M ) :

9 JM
lj s ( X , rW ) ¯ 3

m j

3
m l

( j l m
j
m

l
r J M ) w

jm j
s ( X ) Y

lm l
(rW ). (2.2)

The quantum numbers (l, m
l
) represent the magnitude of the orbital angular

momentum of the colliding electron and its z component. The rotational angular

momentum of the molecule and its z component are denoted by ( j, m
j
). The function

w in equation (2.2) is an asymmetric-top wavefunction, which denotes the rotation of

a polyatomic molecule. Its rotational state is designated by ( j, m
j
, s ). The quantity

( j l m
j
m

l
r J M ) is the Clebsch± Gordan coe� cient. It should be noted here that spin

angular momentum is totally ignored in the present formulation. The target molecule

is assumed to stay in its electronically ground state during the collision. An eŒect of the

electronically excited state on the vibrational excitation has been seldom considered so

far.

The Hamiltonian of the total system is

H ¯ ® "
#
~ #

r
 H

mol
 V , (2.3)

where H
mol

represents the Hamiltonian of the rotational and vibrational motion of the

molecule and V is the interaction potential between the colliding electron and the

molecule. W e have to solve the Schro$ dinger equation

(H ® E ) W JM ¯ 0. (2.4)

After substituting equation (2.1) into equation (2.4), multiplying it on the left by the

complex conjugate of the vibrational function and the angular basis function, and

integrating that over the vibrational and angular variables, we obtain a set of coupled

equations for the radial part of the wavefunction of the colliding electron in the form

0 d #

dr #
®

l « (l «  1)

r #
 k #

n « j « s « 1 u JM
n « l « j « s « (r) ¯ 2 3

n § l § j § s §
© n « l « j « s « r V r n § l § j § s § ª JM u JM

n § l § j § s § (r). (2.5)
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158 Y . Itikawa

The element of the interaction matrix is given by

© n « l « j « s « r V r n § l § j § s § ª JM ¯ & d n & d X & drW [ v
n « ( n ) 9 JM

l « j « s « ( X , rW )]*V [ v
n § ( n ) 9 JM

l § j § s § ( X , rW )].

(2.6)

The wavenumber k in equation (2.5) is de ® ned by

k #
n « j « s « ¯ 2(E ® E vib

n « ® E rot
j « s « ). (2.7)

W hen an asymptotic form of the solution of the equations (2.5) is set to be as

uJM ,nlj s

n « l « j « s « (r) D
r ! ¢

k Õ " / #
n « j « s «

¬ ( d
nn « d ll « d jj « d s s « exp 9 ® i 0 kn « j « s « r ®

p l «

2 1 : ® Snlj s

n « l « j « s « exp 9  i 0 k
n « j « s « r ®

p l «

2 1 : * ,

(2.8)

then the scattering amplitude for the vibrational ± rotational transition is obtained as

f
n ! j !

s
! mj

!

! n « j « s « m j «
( h , u ) ¯ 0 p

k
!

k
n « j « s « 1

" / #
3
JM

3
ll «

il Õ l « + " (2l  1) " / # ( j
!
l m

j !
0 r J M )

¬ ( d
n ! n

« d ll « d j ! j
« d s

!
s « ® Sn ! lj !

s
!

n « l « j « s « ) 3
ml «

( j « l « m
j «

m
l «

r J M ) Y
l « ml «

( h , u ).

(2.9)

The angles ( h , u ) denote the ® nal direction of the scattered electron with respect to the

incident electron. The diŒerential cross-section (DCS) for the transition is calculated

in the form

q(n
!

j
!
s
!

m
j !

! n « j « s « m
j «
) ¯

k
n « j « s «

k
!

r f
n ! j !

s
! mj

!

! n « j « s « m j «
( h , u ) r # . (2.10)

Now we consider the same scattering problem in a molecule-® xed (MF) frame,

where the coordinate origin is ® xed at the gravity centre of the molecule and the z axis

is chosen along one of the symmetry axes of the molecule. The SF and the M F frames

are related through a conventional scheme of coordinate rotation. In particular, the

spherical harmonics in the two frames satisfy the relation

Y
lm l

(rW ) ¯ 3
l
l

Y
l l l

(rW « ) D l $ml
l
l
( X ). (2.11)

Here rW « denotes the direction of the colliding electron in the M F frame, l
l

the z

component of the orbital angular momentum in the M F frame, and D the Wigner

rotation matrix.

In the M F frame, we introduce a symmetry-adapted angular basis function (Burke

et al. 1972)

X m

l
(rW « ) ¯ 3

l
l

b m

l l l
Y

l l l
(rW « ), (2.12)

where the index m denotes collectively the indices specifying the irreducible rep-

resentation and those distinguishing the degenerated members. The explicit expres-

sions of the coe� cient b for the C
# v

and O
h

symmetries are given in the paper by Burke

et al. (1972). Those for other symmetries can be constructed according to the formula
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Electron-impact Š ibrational excitation 159

given by, for example, Altman and Cracknell (1965). W ith use of the angular basis

functions (2.12), the wavefunction of the total system is expressed in the M F frame as

follows:

W JM ¯ 3
n « l « m « l «

r Õ " wJM
n « l « m « l « (r) v

n « ( n ) Da J $M l « ( X ) X m «

l «
(rW « ). (2.13)

Here we have used a normalized D function (denoted by Da ). The quantity l is the M F-

frame z component of the total angular momentum of the system. After inserting

equation (2.13) into equation (2.4) and taking the same procedure as in the SF frame,

we have the scattering equations in the form

0 d #

dr #
®

l « (l «  1)

r #
 k #

n « 1 wJM
n « l « m « l « (r) ¯ 2 3

n § l § m § l §
© n « l « m « l « r V r n § l § m § l § ª JM wJM

n § l § m § l § (r)

 2 3
n § m § l §

© n « m « l « r H
rot

r n § m § l § ª JMl «
wJM

n § l « m § l § (r).

(2.14)
The element of the interaction matrix is obtained as

© n « l « m « l « r V r n § l § m § l § ª JM ¯ d l « l § © n « l « m « r V r n § l § m § ª , (2.15)
with

© n « l « m « r V r n § l § m § ª ¯ & d n & drW « [ v
n « ( n ) X m «

l «
(rW « )]*V [ v

n § ( n ) X m §
l §

(rW « )]. (2.16)

The interaction matrix element in this case does not depend on l , because the

electron± molecule interaction depends only on the position of the colliding electron

relative to the molecule and not on the molecular orientation in the space. The second

term on the right-hand side of equation (2.14) appears owing to the rotation of the

coordinates.

To obtain the scattering amplitude, we have to go back to the SF frame.

Comparing the two expansion forms (2.1) and (2.13) and using the equation (2.11), we

obtain a formula for the frame transformation in the form

wJM
n « l « m « l « ¯ 3

j « s «
B

j « s « , m « l « (Jl « ) uJM
n « l « j « s « , (2.17)

with the transformation coe� cient

B
j « s « , m « l « (Jl « ) ¯ 3

l
l «

aj «
s « , l «

Õ l
l «
b m «

$l « l l « 0 2j «  1

2J  1 1 " / #
( j « l « l « ® l

l «
l

l «
r J l « ). (2.18)

The transformation is unitary so that we also have

u JM
n « l « j « s « ¯ 3

m « l «
B $j « s « , m « l « (Jl « ) wJM

n « l « m « l « . (2.19)

On the right-hand side of equation (2.18), b is the coe� cient appearing in equation

(2.12) and a is the expansion coe� cient of the asymmetric-top function in terms of the

D function as

w
jm j

s ( X ) ¯ 3
l
j

aj
s l

j
Da j $m j

l
j
( X ). (2.20)

2.2. Fixed-nuclear-orientation approximation

Usually the molecular rotation is very slow compared with the speed of the incident

electron. We can safely assume that the molecular orientation does not change during

the collision. This is called the ® xed-nuclear-orientation (FNO) approximation or the
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160 Y . Itikawa

rotationally sudden approximation. In the MF frame, this approximation corresponds

to the neglect of the second term on the right-hand side of equation (2.14). Thus the

scattering equation in the FNO approximation are obtained in the form

0 d #

dr #
®

l « (l «  1)

r #
 k #

n « 1 w
n « l « m « l « (r) ¯ 2 3

n § l § m §
© n « l « m « r V r n § l § m § ª w

n § l § m § l « (r). (2.21)

In this approximation, l is conserved during the collision. We drop the index l of the

radial function w hereafter. We solve equation (2.21) with an asymptotic condition

wnl m

n « l « m « (r) D
r ! ¢

k Õ " / #
n « ( d nn « d ll « d m m « exp 9 ® i 0 kn « r ®

p l «

2 1 : ® Snl m

n « l « m « exp 9  i 0 k
n « r ®

p l «

2 1 : *
(2.22)

and obtain the S matrix in the M F frame. Through the frame transformation (2.19),

the S matrix in the SF frame is calculated as

Snlj s

n « l « j « s « ¯ 3
l

3
m m «

B
j s , m l (Jl ) B $j « s « , m « l (Jl « ) Snl m

n « l « m « . (2.23)

Inserting this S matrix into (2.9), we can obtain the scattering amplitude and

therefrom the DCS for the vibrational ± rotational transition.

In the present paper, we are concerned only with the vibrational transition and

take an average over the initial rotational states and a sum over the ® nal rotational

states of the cross section. Then the DCS for the vibrational transition n
!
! n « is

obtained as
qFNO (n

!
! n « ) ¯ 3

L

A
L

P
L
(cos h ), (2.24)

with the coe� cient

A
L

¯
1

4k #
!

(2L  1) 3
ll

b
3
l « l

b «
3
m m a

3
m « m ` «

3
l
l
l `
l

3
l
l « l ` l «

il Õ l « Õ l
b
+l

b «
[(2l  1) (2lb  1) (2l «  1) (2lb «  1)] " / #

¬ ( ® 1) l
l+

l
l « 0 l

0

lb
0

L

0 1 0 l
«

0

lb «
0

L

0 1 0 l

l
l

lb
® l a

l

L

m
L
1 0 l «

l
l «

lb «
® l a

l «

L

m
L
1

¬ (b m «

l « l l «
Sn ! l m

n « l « m « b
m
$l l l

) (b m ` «
l
a « l `

l «
Sn ! l

a m `

n « l
a « m ` « b

m `
$la l ` l

)*. (2.25)

The corresponding formula for the integral cross-section (ICS) is

QFNO (n
!
! n « ) ¯

p

k #
!

3
ll «

3
m m «

r Sn ! l m

n « l « m « r # . (2.26)

In equations (2.24) and (2.25), P
L

is the Legendre function of order L and 0 l

0

lb
0

L

0 1 ,
etc., are the 3 ® j symbols.

2.3. Vibrationally sudden approximation

To solve the scattering equations in the FNO approximation (2.21), a further

simpli ® cation is often made. If the collision is fast compared with the molecular

vibration, we can ignore the vibrational excitation energy compared with the kinetic

energy of the incident electron. That is, we can assume that k
n

¯ k. Then equation

(2.21) becomes

0 d #

dr #
®

l « (l «  1)

r #
 k # 1 w

n « l « m « (r) ¯ 2 3
n § l § m §

© n « l « m « r V r n § l § m § ª w
n § l § m § (r). (2.27)
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Electron-impact Š ibrational excitation 161

A solution of this equation can be obtained in the following way. First we solve

0 d #

dr #
®

l « (l «  1)

r #
 k # 1 wh

l « m « (r ; n ) ¯ 2 3
l § m §

© l « m « r V r l § m § ª wh
l § m § (r ; n ) (2.28)

at a ® xed nuclear con® guration designated by n . Then the solution of equation (2.27)

is constructed as

wnl m

n « l « m « (r) ¯ & d n v $n « ( n ) wh l m
l « m « (r ; n ) v

n
( n ). (2.29)

The element of the interaction matrix in equation (2.28) is given by

© l « m « r V r l § m § ª ¯ & drW « X m «
$l «

(rW « ) VX m §
l §

(rW « ). (2.30)

W hen we solve equation (2.28) with an asymptotic condition

wh l m
l « m « (r ; n ) D

r ! ¢

k Õ " / # ( d
ll « d m m « exp 9 ® i 0 kr ®

p l «

2 1 : ® Sh l m
l « m « ( n ) exp 9  i 0 kr ®

p l «

2 1 : * , (2.31)

the S matrix in the M F frame is obtained as

Snl m

n « l « m « ¯ & d n v $n « ( n ) Sh l m
l « m « ( n ) v

n
( n ). (2.32)

The scheme of approximation described here is called the vibrationally sudden

approximation or sometimes the adiabatic-nuclei approximation. The scattering

equations (2.28) are rather simple to solve, but they have to be solved at many diŒerent

positions of nuclei. The disadvantage of the method is its inapplicability near

threshold, where the collision energy is comparable with the excitation energy. There

have been several proposals to correct this de® ciency (for example, Morrison and Sun

(1995)).

3. Interaction between the colliding electron and the target molecule

The main part of the interaction is the electrostatic contribution V st . It is

composed of two parts : the Coulomb interaction V el of the colliding electron with the

molecule electrons and the interaction V nuc with the nuclei. That is

V st(r, n ) ¯ V el (r, n )  V nuc (r, n ), (3.1)

V el ¯ & dr
i
q el(r

i
, n )

1

r r ® r
i
r
, (3.2)

V nuc ¯ ® 3
N

j= "

Z
j

r r ® R
j
r
. (3.3)

Here q el denotes the density of the molecular electrons (whose position is denoted by

r
i
) and R

j
the position of the jth nucleus with charge Z

j
. It should be noted that all the

interaction potentials depend on the nuclear con ® guration, which is speci® ed by the

normal coordinate n . Now we consider the interaction matrix in the MF frame (2.16).

To evaluate this, we expand the potential in terms of the symmetry-adapted angular

basis function (2.12) :

V st(r, n ) ¯ 3
k g

V st
k g (r, n ) X

g

k
(rW ). (3.4)

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
0
4
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



162 Y . Itikawa

In this section, everything is referred to the M F frame, so that rW is used instead of rW « in

equation (2.12). Substituting equation (3.4) into equation (2.16), we have

© n « l « m « r V st r n § l § m § ª ¯ 3
k g

© n « r V st
k g r n § ª X 9 l «

m «
k

g

l §
m § : . (3.5)

Here we have separated the integral into the angular part

X 9 l «

m «
k

g

l §
m § : ¯ & drW X m «

$l «
X g

k X m §
l §

(3.6)

and the vibrational part

© n « r V st
k g r n § ª ¯ & d n v $n « ( n ) V st

k g (r, n ) v
n § ( n ). (3.7)

The angular integral (3.6) can be calculated analytically. To calculate the integral (3.7)

we need an explicit form of the molecular vibrational function.

Now a simple method to evaluate equation (3.7) is introduced. First we assume the

vibration to be harmonic. Then we expand the potential in terms of the normal

coordinates around the equilibrium position to the ® rst order :

V st
k g (r, n ) ¯ V st

k g (r, n ¯ 0)  3
s
0 ¥ V st

k g

¥ n
s
1

n = !

n
s
. (3.8)

Finally we obtain the relevant element of the matrix in the form

© n « r V st
k g r n § ª ¯ V st

k g (r, n ¯ 0) d
n « n §  3

s
0 ¥ V st

k g

¥ n
s
1

n = !

© n « r n
s
r n § ª , (3.9)

with

© n « r n
s
r n § ª ¯ 9 0 n !s

 1

2 1 " / #
d

n §
s,n

«
s+ "

 0 n !s
2 1 " / #

d
n §

s, n
«
s Õ " : 0

p ( 1 s)

d
n «

p n §
p
. (3.10)

In this method we need no explicit form of the vibrational wavefunction. Furthermore

we do not need to calculate the potential at any other nuclear con® guration than the

equilibrium con® guration. Additional information that we need is the normal-

coordinate derivative of the potential at the equilibrium position. The form (3.9) can

reliably be used at least when we consider lower vibrational states.

One of the features of the electron± molecule collision distinguished from the

electron± atom collision is the presence of a long-range interaction in the former. The

long-range interaction arises from an electronic multipole moment of the molecule.

Using the multipole expansion

1

r r
"
® r

#
r
¯ 3

k

r k

#
r k + "
"

4 p

2 k  1
3

m

X m
$k (rW

"
) X m

k (rW
#
) for r

"
" r

#
. (3.11)

The electrostatic potential is reduced to its long-range part. That is, when the colliding

electron is located far apart from the target molecule,

V st ! V st
LR

¯ 3
k g

V LR
k g (r, n ) X g

k (rW ), (3.12)

with

V LR
k g (r, n ) ¯ ® 0 4 p

2 k  1 1 " / #
M ( k )

g ( n )r Õ k Õ " . (3.13)
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The quantity M ( k )
g is the electric multipole moment de® ned by

M ( k )
g ( n ) ¯ 0 4 p

2 k  1 1 " / # & dr
i
q (r

i
, n ) r k

i
X g

$k (rW
i
). (3.14)

In other words, M ( k )
g with k ¯ 1, 2, ¼ are the dipole, quadrupole, ¼ , moments

respectively of the molecule. In equation (3.14), q is the charge density of the molecule,

including both the electronic and the nuclear contributions. Thus the vibrational

matrix element of the multipole moment or the derivative of the multipole moment is

an important quantity in causing a vibrational transition.

When we consider the electrostatic potential of a molecule, the molecule is assumed

not to be deformed by the incoming electron. By this assumption, we implicitly

distinguish the colliding and the molecular electrons. Quantum-mechanically the total

wavefunction should be antisymmetric with respect to the interchange of any two of

the incident plus molecular electrons. This gives rise to an exchange eŒect of electrons.

This eŒect can be treated rigorously, if we properly antisymmetrize the total

wavefunction (for example Gianturco et al. (1995)). The resulting scattering equations,

however, include non-local terms, thereby becoming much more di� cult to solve. To

circumvent this di� culty, various kinds of local model potential have been proposed

to take into account this exchange eŒect eŒectively. Here we show one example : the

free-electron-gas exchange model potential proposed by Hara (1967), which is given

by

V ex(r, n ) ¯ ®
2

p
k

F 0 12 
1 ® g #

4 g
ln ) 1  g

1 ® g ) 1 , (3.15)

with

g (r, n ) ¯
(k #  2I  k #

F
) " / #

k
F

, (3.16)

k
F
(r, n ) ¯ [3 p # q el (r, n )]" / $ . (3.17)

In this model, the molecular electrons are treated as a free-electron gas with the density

q el and the incident electron is assumed as a plane wave. The quantity I in equation

(3.16) is the ionization potential of the molecule. The accuracy of this and other model

exchange potentials have been examined in many cases (for example, Gianturco et al.

(1995)).

In the actual collision process, the target molecule is distorted by the incoming

electron. Strictly speaking, this distortion (the so-called target polarization) depends

on the speed of the incident electron. Quantum-mechanically it can be interpreted as

a virtual excitation of the energetically inaccessible electronic states of the target. Any

rigorous treatment of this eŒect is very di� cult and still remains to be one of the

greatest problems in the theory of electron collision with atoms and molecules. A

number of approximate methods have been proposed to include eŒectively the target

polarization in the collision calculation. A simple way is to introduce a local model

potential also for this eŒect. One of the model potential is the correlation± polarization

potential de® ned by (Padial and Norcross 1984)

V pol (r, n ) ¯ V pol
LR

(r, n ), for r " r
c
,

(3.18)
¯ V corr (r, n ), for r ! r

c
.

Here the long-range part is given by the asymptotic polarization potential in the form

V pol
LR

¯ ®
1

2r %
[ a

xx
(rW [ xW ) #  a

yy
(rW [ yW ) #  a

zz
(rW [ zW ) # ], (3.19)
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164 Y . Itikawa

with a molecular polarizability tensor a
ij
. The short-range part in equation (3.18) is the

correlation potential calculated by the local-density approximation of electron gas.

The short- and long-range parts are matched at the crossing point (r
c
) of the two parts

as a function of electron distance r. This model polarization potential has been

successfully applied to many collision systems. This and some other methods to

consider the target polarization have been discussed by Gianturco et al. (1995) .

When we consider the eŒects of electron exchange and target polarization with

local model potentials V ex and V pol respectively, the static potential V st in equations

(3.4) ± (3.9) should be replaced by the sum V ¯ V st  V ex  V pol . In some cases the

asymptotic part of the polarization (3.19) is also important as a long-range interaction

such as V st
LR

.

4. The Born approximation for vibrational transitions

A simple method of cross-section calculation is an application of the perturbation

theory. If the terms on the right-hand side of equation (2.21) are small, the equation

can be solved in the Born approximation. The ® rst-order solution gives the S matrix

in the form

(Snl m

n « l « m « )Born ¯ ® 4i(k
n

k
n « ) " / # &

¢

!

dr r # j
l
(k

n
r) j

l «
(k

n « r) © n « l « m « r V r nl m ª , (4.1)

where j
l

is the spherical Bessel function of lth order. When we put this into equations

(2.25) and (2.26), we obtain the relevant cross-section in the (® rst-order) Born

approximation. Over 20 years ago, Itikawa (1974) derived a general Born formula for

the vibrational excitation cross-section of a polyatomic molecule without resorting to

the partial wave expansion. As is shown in section 3, the interaction potential is

expanded in terms of the symmetry-adapted angular basis function as

V(r, n ) ¯ 3
k g

Vk g (r, n ) X g
k (rW ). (4.2)

(In the 1974 paper of Itikawa, the function Z
lm d is used instead of X g

k , but these two

have essentially the same meaning.) On the basis of the standard theory of

perturbation, Itikawa derived the DCS for the vibrational transition as follows:

qBorn (n
!
! n « ) ¯

1

p

k
n «

k
!

3
k g
) &

¢

!

dr r # j k (Kr) © n « r Vk g r n
!
ª ) # . (4.3)

Here K is the momentum transferred and given by

K # ¯ k #
!
 k #

n « ® 2k
!

k
n « cos h . (4.4)

Using this relation, the ICS can be calculated from

QBorn (n
!
! n « ) ¯

2 p

k
!

k
n « &

k ! +kn «

r k ! Õ kn « r
qBorn (n

!
! n « ) K dK . (4.5)

Now we consider only the long-range electrostatic interaction. The Born method

is best reliable when those long-range forces dominate the collision process. W hen the

colliding electron is far from the molecule, the electrostatic interaction is reduced to its

long-range part (see equation (3.12))

Vk g ! ® 0 4 p

2 k  1 1 " / #
M ( k )

g ( n )
1

r k + "
. (4.6)
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Substituting this into equation (4.3), we have

qBorn, LR (n
!
! n « ) ¯

1

p

k
n «

k
!

3
k g

4 p

2 k  1
r © n « r M ( k )

g r n
!
ª r # ) &

¢

!

dr r # j k (Kr) r Õ k Õ " ) # . (4.7)

Using the formula

&
¢

!

dr r # j k (Kr)r Õ k Õ " ¯
1

(2 k ® 1) ! !
K k Õ # , (4.8)

we ® nally obtain

qBorn, LR (n
!
! n « ) ¯ 4

k
n «

k
!

3
k g

1

2 k  1 0 1

(2 k ® 1) ! !
K k Õ # 1 #

r © n « r M ( k )
g r n

!
ª r # . (4.9)

In particular a dipole interaction gives

qBorn, dipole (n
!
! n « ) ¯

4

3

k
n «

k
!

1

K #
3

g

r © n « r M ( " )
g r n

!
ª r # , (4.10)

QBorn, dipole (n
!
! n « ) ¯

8 p

3

1

k #
!

ln ) k !
 k

n «

k
!
® k

n « ) 3 g

r © n « r M ( " )
g r n

!
ª r # . (4.11)

The dipole matrix element © n « r M ( " )
g r n

!
ª is the quantity describing the extent of emission

or absorption of IR light by a molecule. In fact the IR absorption intensity A is given

by the formula

A(n « " n
!
) ¯

2 p x

3 ò c
3

g

r © n « r M ( " )
g r n

!
ª r # , (4.12)

where x is the corresponding IR frequency. Thus, once we know the relevant IR

intensity, we can immediately calculate the vibrational cross-section approximately as

in equations (4.10) and (4.11). Although already well known for diatomic molecules,

this was applied to polyatomic molecules for the ® rst time by Itikawa (1971) for CO
#

and by Davis and Schmidt (1972) for CH
%

and other hydrocarbons. Since then this

relation has been widely used by experimentalists to compare with their cross-section

data.

Figure 1 shows one example of comparison of the experimental data with the Born

cross-section. The ® gure compares the DCS for the vibrational excitation of CF
$
Cl

experimentally obtained by Mann and Linder (1992), with the corresponding Born

value calculated with a dipole interaction (called the Born dipole cross-section,

hereafter). The molecule CF
$
Cl has six normal modes of vibration, of which m

"
, m

#
, m

%
and m

&
are IR active. The excitation of m

"
and m

%
cannot be separated experimentally so

that the sum of the respective cross-sections is shown in the ® gure (as m
" , %

). The Born

dipole approximation reproduces very well the experimental data for the m
" , %

mode,

particularly at the lowest energy considered. For other IR-active modes (i.e. m
#

and m
&
),

the Born dipole theory does not work well, except in the region of small scattering

angles where no experimental data are available.

As is seen from the formula above, the Born dipole cross-section is proportional to

the dipole matrix element squared. That quantity can be derived from the IR intensity

A and the vibrational frequency x as

3
g

r © n « r M ( " )
g r n

!
ª r # (au) ¯ 0 ± 061 757

A (km mol Õ " )

x (cm Õ " )
. (4.13)
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166 Y . Itikawa

Figure 1. Comparison of measured values of DCSs for the vibrational excitation of CF
$
Cl

with those of the Born dipole calculation (BDA), at three points of collision energy E. The

symbol m
i
means the ith normal mode and m

" , %
denotes the sum of the cross sections for

m
"

and m
%
. (Mann and Linder (1992), printed with permission.)
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Dipole matrix element squared for IR-active modes of vibration calculated from the IR

intensity A and the vibrational frequency x .

Molecule

Normal

mode

x ‹

(cm Õ " )

A ‹

(km mol Õ " )

(dipole matrix element) #

(10 Õ $ au)

H
#
O m

"
3657 2 ± 93 0 ± 0495

m
#

1595 62 ± 5 2 ± 42

m
$

3756 41 ± 7 0 ± 686

H
#
S m

"
2615 Œ 1 ± 34 ¬ 10 Õ $ �

m
#

1183 1 ± 50 ¬ 10 Õ # s
m
$

2626 7 ± 08 ¬ 10 Õ ’ �

CO
#

m
#

667 47 ± 8 4 ± 43
m
$

2349 498 ± 7 13 ± 1

N
#
O m

"
1285 59 ± 1 2 ± 84

m
#

589 8 ± 20 0 ± 860

m
$

2224 289 8 ± 03

NH
$

m
"

3337 4 ± 9 0 ± 091

m
#

950 148 9 ± 62
m
$

3444 3 ± 2 0 ± 057

m
%

1627 27 ± 1 1 ± 03

CH
%

m
$

3019 65 ± 5 1 ± 34

m
%

1311 31 ± 8 1 ± 50

CF
%

m
$

1283 935 ± 3 45 ± 0
m
%

632 12 ± 3 1 ± 20

SiH
%

m
$

2191 320 ± 5 9 ± 03
m
%

914 296 ± 3 20 ± 0

SF
’

m
$

948 1361 88 ± 7
m
%

615 74 7 ± 4

CF
$
Cl m

"
1102 561 31 ± 4

m
#

783 35 2 ± 8
m
%

1210 672 34 ± 3
m
&

560 3 ± 1 0 ± 34

‹ Bishop and Cheung (1982), except for H
#
S.

Œ Shimanouchi (1972).
� Calculated with the dipole derivative determined by Lechuga-Fossat et al. (1984).

s Calculated with the dipole derivative determined by Emerson and Eggers (1962).

From the table of A and x compiled by Bishop and Cheung (1982), the dipole matrix

element squared is calculated as in the table. The table shows that, in the case of CF
$
Cl,

the dipole matrix elements for m
"

and m
%

are much larger than those for m
#

and m
&
. This

may be the main reason for the good applicability of the Born dipole theory to the

excitation of the m
" , %

modes of vibration in the e  CF
$
Cl collision. In the table, we

show the dipole matrix element for a number of polyatomic molecules of some

interest. The extent of the dominance of the dipole interaction in the vibrational

excitation can be estimated from the table.

5. Examples of calculation

For the electron-impact vibrational excitation of polyatomic molecules, a very

limited number of theoretical studies have been reported so far, except for the Born-

type calculations. Jain and Thompson (1983, 1984), and recently Gianturco and his

colleagues, applied the vibrationally sudden approximation to the calculation for
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168 Y . Itikawa

H
#
O, H

#
S and CH

%
. The present author and his group calculated the vibrational cross-

section of H
#
O and H

#
S, based on the rotationally sudden and vibrationally close-

coupling method. Some special attention has been given to the vibrational excitation

of CO
#

(particularly the threshold structure and the resonance in the cross-section).

Several workers have tried to calculate the vibrational cross-section of CO
#

(Morrison

and Lane 1979, Thirumalai et al. 1980, 1981, Thirumalai and Truhlar 1981, Whitten

and Lane 1982), but the results are very fragmentary (i.e. only for a limited region of

energy and scattering angle). There are some other papers discussing resonance eŒects

in the vibrational excitation, which is not discussed in the present paper. In the

following, the theoretical results for H
#
O, H

#
S and CH

%
are presented, together with

the corresponding experimental data.

5.1. H
#
O

Recently Nishimura and Itikawa (1995) calculated the vibrational excitation cross-

section of H
#
O using the rotationally sudden and vibrationally close-coupling method.

They solved the scattering equations (2.21) by taking the initial and the ® nal

vibrational states to be coupled (i.e. a two-state close-coupling approximation). They

took an interaction potential composed of three parts : the electrostatic, exchange and

polarization parts. The electrostatic potential was calculated accurately with the use of

an ab-initio multicentred wavefunction of the molecule. Use was made of a local model

potential for the electron exchange and target polarization : the Hara-type free-

electron-gas exchange potential (3.15) for the former and the correlation± polarization

potential (3.18) for the latter. The interaction matrix element with respect to the

vibrational states was evaluated from the ® rst-order derivative of the potential as in

equation (3.9).

The resulting DCS at 6, 10 and 30 eV are shown in ® gures 2 and 3. The cross-

section was calculated for the excitation of the lowest excited state of the three diŒerent

modes : symmetric stretching (100), bending (010), and antisymmetric stretching (001)

modes. The excitation energies of the (100) and (001) modes are too close to each other

to be separated experimentally. The experimental cross-section for the stretching

modes is the cross-section combined for the (100) and (001) excitations (designated as

(100)  (001) hereafter). As for the theoretical cross-section, we show in the ® gure the

sum of the (100) and (001) cross-sections together with the individual cross-sections.

In the ® gures, two sets of experimental data are compared with the calculation.

Shyn et al. (1988) measured the vibrational cross-section at 2 ± 2± 20 eV. Furlan et al.

(1991) reported their measurement of DCS at 30 and 50 eV. Their DCSs, however, are

available only at 10 ± 60 ° . There is a generally good agreement between the theory and

the experiment, except for the DCS for the stretching modes at 6 eV. The disagreement

may be ascribed to a resonance eŒect and is discussed below in relation to the integral

cross-section. For stretching vibrations, there is no signi® cant diŒerence in the

magnitudes of the cross-sections for the symmetric (100) and the antisymmetric (001)

modes. A systematic diŒerence, however, is seen in the angular dependence of the

cross-sections for the two modes. This may be a re¯ ection of the diŒerence in the

symmetry of those modes.

As mentioned above, Jain and Thompson (1983) applied a vibrationally sudden

approximation to the calculation of the vibrational cross-section of H
#
O. They used

the same procedure for constructing the interaction potential as Nishimura and

Itikawa did. The molecular wavefunctions used by the two groups, however, are

diŒerent from each other. Jain and Thompson calculated the cross-section at 1± 10 eV
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Electron-impact Š ibrational excitation 169

Figure 2. DCSs for the vibrational excitation of bending mode of H
#
O at (a) 6 eV, (b) 10 eV

and (c) 30 eV. Theoretical calculations by Nishimura and Itikawa (1995) ( Ð Ð ) and Jain
and Thompson (1983) ( ^ ) are compared with experimental data obtained by Shyn et al.

(1988) ( D ) and Furlan et al. (1991) ( * ). Also shown are the results of the Born dipole

calculation (± \ ± ).

but reported the DCS at the energies less than 8 eV. Furthermore, they obtained cross-

sections for only the (100) and (010) modes. A comparison of the (010) DCS at 6 eV

shows good agreement between the two sets of calculation (see ® gure 2 (a)). Another

comparison at 8 eV for (100) DCS (not shown here, but see the paper by Nishimura

and Itikawa (1995)) shows, however, a somewhat large discrepancy in the large-angle

region. The latter disagreement may arise from the diŒerence in the target

wavefunctions used.

In the ® gures, a comparison is also made with the Born approximation with a

dipole interaction. Since the dipole interaction dominates in the forward scattering,

the Born method gives almost the same values of DCS as the close-coupling

calculation in the region with h ! 20 ° for the (010) and h ! 5° for the (100)  (001)

modes. As the scattering angle increases, the Born DCS falls rapidly. The dipole
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170 Y . Itikawa

Figure 3. DCSs for the vibrational excitation of stretching modes of H
#
O at (a) 6 eV, (b) 10 eV

and (c) 30 eV. The experimental values (obtained by Shyn et al. (1988) ( D ) and Furlan et

al. (1991) ( * ) correspond to the sum of the cross-sections for the symmetric (100) and
antisymmetric (001) modes. Theoretical results of Nishimura and Itikawa (1995) are

given for the sum (100)  (001) ( Ð Ð ) and for each (100) ( ± ± ± ) and (001) (-----) modes.

Also shown are the results of the Born dipole calculation for the sum of the process,
(100)  (001) ( ± \ ± ).

matrix element for the stretching modes is small compared with that for the bending

mode (see the table). This makes the usefulness of the Born dipole approximation

limited to the narrower angle region for the stretching modes.

In ® gure 4, the ICS obtained by Nishimura and Itikawa (1995) is compared with

two sets of experimental data (Seng and Linder 1976, Shyn et al. 1988). For the

bending mode, the theoretical ICS is larger than the experimental cross-sections by

20 ± 50 %. We have much better agreement between the DCS obtained by the close-

coupling calculation and the experiment of Shyn et al., as far as the latter cross-

sections are available (see ® gures 2 (a) and (b)). A large part of the diŒerence in ICSs

therefore comes from the contributions of DCS at the forward and backward
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Figure 4. ICSs for the vibrational excitation of H
#
O for the (a) bending and (b) stretching

modes. Theoretical calculations by Nishimura and Itikawa (1995) ( Ð [ Ð ) are compared
with the experimental results of Seng and Linder (1976) ( * ) and Shyn et al. (1988) ( D ).

scattering angles for which no DCS could be measured. In particular, in this case, the

theory shows that the dipole interaction results in a large DCS in the forward

direction. This makes an extrapolation of the experimental DCS towards h ¯ 0° very

di� cult. For the stretching modes, both the calculation and the experiment show a

peak as a function of collision energy. The peak position of the theoretical ICS,

however, is located at a higher energy by a few electronvolts than that of the

experimental peak. This peak is usually interpreted as a shape resonance, which is

caused by a temporary capture of the colliding electron in the potential of the target

molecule (Seng and Linder 1976). To reproduce such a resonance, a more elaborate

treatment would be necessary both for the interaction and for the collision dynamics.
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Figure 5. DCSs for the vibrational excitation of the bending mode of H
#
S at (a) 3 eV and (b)

10 eV. Theoretical calculations by Nishimura and Itikawa (1996) ( Ð Ð ) are compared
with experimental data obtained by Gulley et al. (1993) ( E ). Also shown are the results

of the Born dipole calculation (± [ ± ).

Figure 6. DCSs for the vibrational excitation of stretching modes of H
#
S at (a) 3 eV and (b)

10 eV. The experimental values (Gulley et al. 1993) ( E ) correspond to the sum of the

cross sections for the symmetric (100) and antisymmetric (001) modes. Theoretical results
of Nishimura and Itikawa (1996) are given for the sum (100)  (001) ( Ð Ð ) and for each

(100) ( ± ± ± ) and (001) (-----) modes. Also shown are the results of the Born dipole

calculation for the sum of the process, (100)  (001) ( ± [ ± ).

5.2. H
#
S

Nishimura and Itikawa (1996) have extended their calculation of H
#
O to H

#
S. The

two molecules have similar structure, but diŒerent number of electrons. Figures 5 and

6 show the DCSs at 3 and 10 eV. Gulley et al. (1993) reported their experimental result

of the vibrational excitation of H
#
S. They measured, however, the DCSs at only 2 and

3 eV and obtained no ICS. The comparison of theory and experiment at 3 eV (® gures

5 (a) and 6 (a)) is rather disappointing, when the fairly good agreement obtained in the
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case of H
#
O is considered. The discrepancy may be attributed to a resonance eŒect. In

fact, Rohr (1978) experimentally found a broad peak at 2 ± 3 eV, which he suggested to

be a shape resonance. Another possible reason for the discrepancy is the inaccuracy of

the target wavefunction employed in the calculation. The wavefunction was optimized

at the self-consistent ® eld (SCF) level. The intramolecule correlation would be more

important in H
#
S than in H

#
O.

Jain and Thompson (1984) extended their vibrationally sudden calculation to H
#
S.

Again they calculated cross-sections only for the excitation of (100) and (010) modes.

Their DCS is available only at 2 eV for (010) and at 2 and 3 eV for (100) excitations.

W hen a comparison is made between the (100) DCSs at 3 eV of Nishimura and Itikawa

and of Jain and Thompson (not shown here, but see the paper by Nishimura and

Itikawa (1996)), the latter cross-section is larger than the former. The Jain ± Thompson

DCS is too large compared even with the experimental DCS for (100)  (001) .

In ® gures 5 and 6, we also show the Born dipole cross-section for comparison. For

H
#
S, the dipole matrix element is very small (see the table). The Born dipole

approximation produces a meaningful value only in the very vicinity of h ¯ 0° .

Nishimura and Itikawa (1996) calculated the ICS for the excitations of (100), (010)

and (001) modes of vibration at 3± 30 eV. No corresponding experimental data are

available. Jain and Thompson (1984) reported the theoretical ICS at 0 ± 5± 7 eV, but for

only (100) and (010) modes. The results of the two sets of calculations (the

Nishimura± Itikawa and Jain ± Thompson data) disagree with each other as in the case

of DCS mentioned above. This diŒerence probably comes from the diŒerence in the

target wavefunctions used. For a more detailed study, further experimental data

would be helpful.

5.3. CH
%

The only theoretical work (except for a Born-type calculation) on the vibrational

excitation of CH
%

is the recent calculation by Althorpe et al. (1995). They employed the

vibrationally sudden approximation, supplemented by a non-adiabaticity correction

near threshold. They took into account the eŒect of electron exchange rigorously but

used a local model potential for the target polarization.

Figure 7 shows the theoretical results of the ICS for the ( m
"
, m

$
) modes and ( m

#
, m

%
)

modes. Experimentally it is very di� cult to separate the m
"
( m

#
) from the m

$
( m

%
) modes.

In the ® gure, the sum of the cross-sections for the m
"

and m
$

(and also m
#

and m
%
) is

compared with the corresponding experimental values (Tanaka et al. 1983, Shyn

1991). The theory reproduces the broad peak at around 7 ± 5 eV in the experimental

data. There are some disagreements, however, in the absolute magnitudes of the

theoretical and the experimental cross-sections. It should be noted that the

experimental values do not agree with each other and have a large uncertainty

(30 ± 50 % for the Tanaka et al. data and 25 ± 29 % for the Shyn data). A more detailed

comparison could be made for DCS, but Althorpe et al. reported no DCS in their

paper.

For the IR-active modes of vibration (i.e. m
$

and m
%
), the theoretical cross-sections

of Althorpe et al. show a sharp peak just above the respective threshold. This kind of

threshold structure has been studied experimentally (Rohr 1980, Sohn et al. 1983,

Lunt et al. 1994), but the experimental data available near threshold are only DCSs at

a few scattering angles. In the ® gure we also show the vibrational cross-section for the

m
$

and m
%

modes calculated in the Born approximation with a dipole interaction. The

energy dependence of the cross-section obtained by Althorpe et al. near threshold is

close to that of the Born dipole one. This may suggest that the dipole interaction plays
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Figure 7. ICCs for the vibrational excitation of CH
%

for the (a) m
"
, m

$
and (b) m

#
, m

%
modes. Here

m
i
means the ith normal mode and m

i, j
indicates the sum of the cross-sections for m

i
and m

j
.

Theoretical calculations by Althorpe et al. (1995) are compared with experiment by

Tanaka et al. (1983) and Shyn (1991). The results of the Born dipole calculation are also

shown for the IR-active modes, m
$

and m
%
.

a signi® cant role in the vibrational excitation of the m
$

and m
%

modes at the energies near

threshold. This would be studied in more detail, if we could make a comparison of

DCSs.

6. Concluding remarks

In the present paper, an approach to cross-section calculation is presented for the

electron-impact vibrational excitation of polyatomic molecules. It is based on the

FNO (in other words, the rotationally sudden) approximation. The resulting scattering

equations are solved by a close-coupling method or by a vibrationally sudden

approximation. Cross-sections obtained in the calculations along this approach for

H
#
O, H

#
S and CH

%
are shown graphically and compared with experimental data.

Agreement between the theoretical and experimental values is generally good. In some

cases, however, one sees signi® cant disagreement. The largest uncertainty on the

theoretical side is ascribed to the determination of the interaction matrix elements. For

the vibrational excitation, we need to know the dependence of the electron± molecule

interaction on the nuclear con ® guration of the molecule. We have to have an accurate

molecular wavefunction not only at the equilibrium position of the nuclei but also for

their non-equilibrium positions. It is often said that an SCF-type wavefunction is not

su� ciently reliable to produce an IR intensity (i.e. a derivative of dipole moment),

although it can give a fairly good value of dipole moment (Amos 1987 ; Stanton et al.

1991). We have to take into account carefully the intramolecule electron correlation to

obtain the nuclear-coordinate dependence of the interaction potential. The molecular

vibration is not necessarily harmonic. To obtain an accurate interaction matrix, the

anharmonicity should be considered also. Moreover, we have to develop a more

elaborate, but still tractable, method of treatment of target polarization. (For the eŒect

of electron exchange, a rigorous treatment can be made, if necessary.)

For collision dynamics, some kinds of elaborate treatment have been proposed for

diatomic molecules (see the book edited by Huo and Gianturco (1995)). When the

collision energy is low, the motions of the colliding electron and the molecular nuclei

cannot totally be separated (i.e. the non-adiabatic eŒect). W hen the collision energy is
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high, an excitation of electronic state of the molecule may have an eŒect on the

vibrational excitation. Some attempts to include these eŒects in the cross-section

calculation have been tried for diatomic molecules. In principle, those methods can be

extended to polyatomic molecules, although leading to a very time-consuming

calculation. Before that, it is worth applying a simpler approach, such as shown in the

present paper, to a wide range of vibrational excitation of molecules to see the general

trend of the process and to ® nd where the re® nement is needed.
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